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The present stuffy deals with the existence of Delaunay pairwise Gibbs point
process with superstable component by using the well-known Preston theorem.
In particular, we prove the stability, the lower regularity, and the quasilocality
properties of the Delaunay model.
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1. INTRODUCTION

During the last few years significant advances took place in the statistical
analysis of spatial point patterns as summarized in the book of Stoyan et
al.(18) which mainly result from the development of the theory of such pro-
cesses in a mathematical framework. The importance of the Gibbs point
process as a model building principle became widely recognized through
these studies. Indeed, the class of Gibbs point processes is interesting
because it allows to introduce and study interactions between points
through the modelling of an associated potential. This resulting gain
explains their use in statistical physics.

Within the statistical mechanics framework, Gibbs states are defined
as solutions of the well known equilibrium equations referred as the
Dobrushin�Lanford�Ruelle (D.L.R.) equations.(4, 12) In particular, with the
help of the useful correlation functions, (16) Ruelle established the equiv-
alence between equilibrium equations and the Kirkwood�Salsburg equa-
tions for pairwise interactions model.(17) This result has been extended to
higher order interactions.(9, 10) Another way to introduce Gibbs point
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process consist in using a familly of local specifications with respect to a
weight process. The Preston's theorems(15) used precisely this approach in
order to give sufficient conditions on local specifications for existence of
Gibbs states. Moreover, applying one of these theorems, Klein proposed
convenient conditions which carry on local energy(11) and yield a large
class of continuum many body potentials. In recent studies, the Gibbs
variational formula of the pressure which is another characterisation of
Gibbs states, is obtained by the large deviation techniques for superstable
regular Ruelle's class(5) and continuous Potts models.(6)

In 1989, Baddeley and Mo% ller made some connection between Gibbs
point processes and Delaunay graph with the well known ``nearest-neigh-
bour'' Markov point processes.(1)

Avoiding a possible hard-core condition considered in ref. 3, we
proved the existence of some Delaunay Gibbs models.(2) A condition on
the smallest angle of Delaunay triangles gives a lower bound for the local
energy. Moreover, assuming that the interaction potential vanishes when
the radius of the circle circumscribed by each Delaunay triangle tends to
infinity, we obtain the quasilocality property. It allows us to use the
Theorem 3.1 of Preston.(15) Within the same framework, we derive similar
results for pairwise Delaunay model with the smallest angle criteria.

By relaxing the smallest angle condition, we propose here another way
to prove the existence of Gibbs states using the Theorem 3.3 of Preston.(15)

Since the Delaunay pairwise model is stable but not superstable we add a
classical pairwise superstable component acting on the complete graph.
Moreover, the lower regularity and quasilocality properties are obtained
under some greatest angle condition, less restrictive than the smallest angle
one, and a regularity assumption on the pairwise potential which controls
the length of the residual edges.

Some simulations for Delaunay pairwise and triple interaction are
proposed in refs. 1 and 3. Such simulations are based on the Geyer and
Mo% ller algorithm.(8, 7)

After some general preliminaries about Delaunay triangulation and
point processes (Section 2), we give a presentation of Delaunay pairwise
models and another one with a superstable component (Section 3). In
Section 4, we establish the stability, the lower regularity and weak kind of
quasilocality properties of the Delaunay model with greatest angle condi-
tion. Finally, we prove the existence of Gibbs state.

2. NOTATIONS AND PRELIMINARIES

First of all, let us introduce some general notations. |A| denotes the
Lebesgue measure, when the set A is a bounded Borel set of R2, and the
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counting measure if A is a discrete set. For any sets A and B, we define

A6 B=[z1 _ z2 : z1 # A, z2 # B and z1{z2]

Given any set A, P(A) and P2(A)=A 6 A denote respectively the set of
subsets of A and the set of subsets with two distinct elements of A.

2.1. Delaunay graph

Let � be a triangle, we denote: C(�) the circle circumscribed of �,
R(�) the radius of C(�), h(�) the greatest edge of �, :(�) the greatest
angle of � and ;(�) the smallest angle of �. We call configuration (of
points) a locally finite subset of Rd.

Definition 1. The Delaunay graph of some configuration . in R2

is the unique triangulation in which the interior of the circle C(�) circum-
scribed by every triangle � of the triangulation does not contain any point
of . (see Fig. 1): C(�) & .=<.(14)

In fact, the definition supposes that the configuration . is in a general
position (four points on the same circle are not possible) in a way to ensure
the existence and the uniqueness of the Delaunay graph.(13) In this work,
we want to relax this assumption and we extend the previous definition
by adopting any determistic rule allowing a choice of triangulation of a
subconfiguration �/. of points located on a same circle (with no point

Fig. 1. Delaunay triangulation.
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inside the circle). For instance, a rule based on the lexicographic order on
the polar coordinates could be admissible.

Let Del2(.) be the Delaunay edges and Del3(.) be the Delaunay
triangles of a configuration .. Let us introduce the set DC(.) defined by:

DC(.)=Del2(.) _ Del3(.)

We point out that for any //.,

/ # DC(. _ �) O / # DC(.) (1)

Let . be a configuration of points and x # .. The neighbourhood of x
in . is:

N(x | .)=[xi # ., [x, xi] # Del2(.)]

Let x, y1 , y2 be three points of any configuration . such that
[ y1 , y2] # Del2(.). We denote: [ y1 , y2] and ]y1 , y2[ the closed and open
segments between y1 and y2 , Dy1 , y2

the straight line crossing y1 and y2 ,
6ext(x, [ y1 , y2]) the half-plane not containing the point x where the
boundary is supported by the straight line Dy1, y2

and #(x, [ y1 , y2]) the
angle at x of the triangle [x, y1 , y2]. Furthermore, we let:

Cext(x, [ y1 , y2])=C([x, y1 , y2]) & 6 ext(x, [ y1 , y2])

Xopp([ y1 , y2], .)=[x # .: [x, y1 , y2] # Del3(.)]

Before defining particular subgraphs of the Delaunay graph Del2(.),
we introduce the following particular subsets of Del3(.):

Del ;0
3, ;(.)=[� # Del3(.): ;(�)>;0]

Del :0
3, :(.)=[� # Del3(.): :(�)<:0]

Definition 2. 1. Given any ;0 # ]0, ?�3], the ;-Delaunay graph
of order ;0 of any configuration . is the Delaunay subgraph defined by:

Del ;0
2, ;(.)= .

� # Del
;0
3, ; (.)

[!/�: |!|=2]

2. Given any :0 # [?�2, ?[, the :-Delaunay graph of order :0 of any
configuration . is the Delaunay subgraph defined by:

Del :0
2, :(.)=[! # Del2(.): \x # X opp(!, .), #(x, !)<:0]

=Del2(.)"h(Del3(.)"Del :0
3, :(.)) (2)
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The :-Delaunay graph of order ?�2 is the well-known Gabriel graph.
One may extend the definition of Del :0

2, :(.) for :0 # ]0, ?�2[ by using (2)
only.

In particular, we have for any given :0�?�3 and ;0�(?&:0)�2:

Del ;0
2, ;(.)/Del :0

2, :(.)/Del2(.) (3)

In the rest of the paper we will need the following notation:

Del :0
2, :(.)=P2(.)"Del :0

2, :(.)

The following result is a direct consequence of the elementary property
of inscribed angles.

Lemma 1. Let z1 , z2 # Xopp([ y1 , y2], .).

1. If #(z1 , [ y1 , y2]) # [0, ?�2[ and #(z2 , [ y1 , y2]) # [0, ?�2[ then

&y1& y2&�&x1&x2 &(�sin(:0) &x1&x2&),

\x1 , x2 # .
i=1, 2

Cext(zi , [ y1 , y2])

2. If there exists i # [1, 2] such that #(zi , [ y1 , y2]) # [?�2, :0[ then

&y1& y2&�sin(:0) &x1&x2&, \x1 , x2 # C( y1 , zi , y2)

2.2. Gibbs Point Processes

We denote by B the Borel _-field, Bb the bounded Borel boolean ring
of Rd, and K the set of compact subsets of Rd. Let 0 denotes the class of
all configurations. In particular, an element . of 0 could be represented by
.=�i # N $xi

which is a simple counting Radon measure in Rd (i.e., all the
points x i of Rd are distinct) where for all 4 # B, $x(4)=14(x) is the Dirac
measure and 1A( } ) is the indicator function of a set A. This space 0 is
equipped with the vague topology, where the weak topology for Radon
measures with respect to the set of continuous functions vanishing outside
a compact set. F is the _-field spanned by the maps . � .(4), 4 # Bb . The
set of all configurations in a measurable set 4/Rd will be denoted by 04

and the corresponding _-field F4 is similarly defined. Furthermore, for any
4 # Bb ,

(0, F)=(04 , F4)_(04c , F4c)
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where 4c denotes the complement of 4 in Rd. Let F� 4 be the reverse
projection of F4 under the previous identification, so that F� 4 is a _-field
on 0. Finally, 0f denotes the class of all finite subsets of Rd.

The local energy E: 0f_0 � R _ [+�] is a measurable function
such that, for any . # 0 and any permutation _ of any n distinct points
x1 ,..., xn # Rd:

E \ :
n

i=1

$xi
, .+=E(x_(1) , .)+E(x_(2) , .+$x_(1))

+ } } } +E \x_(n) , .+ :
n&1

i=1

$x_(i) +
This last quantity is physically interpreted as the energy required to add
the points x1 ,..., xn into the configuration .. Furthermore,

V(.)=E(., <)

is physically interpreted as the finite energy of the configuration . adopting
the convention V(<)=0. Under the finiteness of V(. _ �), the mutual
energy W(., �) between the two finite configurations . and � is defined
by:

W(., �)=V(. _ �)&V(.)&V(�)=E(., �)&E(., <)

Later on, we adopt some notations similar to that of Preston and we define
the same sets R0

4 , R+
4 , R&

4 and R4 used by Preston (p. 97, ref. 15). Given
some configuration � # R4 , we denote, for any . # 04 :

V4(., �)=E(., �4c)=V(. _ �4c)&V(�4c) if �4c # 0f

and

V4(., �)= lim
4� � R2

V 4�
4(., �)

when the limit exists and where, for any 4� #4,

V 4�
4(., �)=V4(., � & 4� )

A Gibbs point process on Rd is a probability distribution P on (0, F)
and is usually defined using a family of local specifications with respect to
a weight process (often a stationary Poisson process with distribution Q
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and intensity *Q =1). For such a process, given some configuration �
in 0, the conditional probability on 4 # Bb is of the form:

?4(�, F )={ 1
Z4(�)

# |
04

exp(&V4(., �)) 1F (. _ �4c) Q4(d.)= 1R4
(�)

for any F # F, where

Z4(�)=|
04

exp(&V4(., �)) Q4(d.)

is called the partition function and Q4 is the measure (corresponding to
the Poisson process with intensity *) expressed by:

Q4(d.)=exp(&*|4| ) :
+�

n=0

*n

n!
d n.

It is well known that the collection of probability kernels (?4)4 # Bb

satisfies the set of compatibility and measurability conditions which defines
a local specification in the Preston's sense. The main condition is that of
consistency:

?4?4$=?4 for any 4$/4

Let us recall the Theorem 3.3 of Preston (p. 42, ref. 15) which is often
used to prove the existence of a Gibbs state. Here, we use the condition
numbers of this theorem.

Definition 3. We call a cylindric function, a real-valued function
on 0 such that:

\. # 0, _D # Bb : f (.)= f (. & D)

A set 4 is said to be cylindric if its indicator function 14 is a cylindric func-
tion.

Let Ck be the hypercube in Rd of length 2k centered at the origin. We
introduce the following two sets:

H=[. # 0 : \�/., � # 0f , V(�)<+�]

Um=H & ,
k�1

[. # 0, .(Ck "Ck&1)�m|Ck"Ck&1 |]
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Theorem 1. Let 6=[?4]4 # Bb
be a local specification with respect

to R=[R4]4 # Bb
. Assume that:

(3.7) Given 3 # K and #>0, there exists a probability measure | on
F� 3 , 4 # Bb and $>0 such that:

(F # F� 3 with |(F )<$) O (?4� (<, F )<#, \4� #4)

(3.12) Given any $>0, there exists m�1 such that:

?4(<, Um)>1&$, \4 # Bb

(3.13) Given 4 # Bb , #>0 and a cylindric set F # F, there exists a
cylindric function f such that:

|?4(., F )& f (.)|<# \. # Um

Then G(E ){<, where G is the set of Gibbs measures P, associated with
the local specification 6, satisfying the D.L.R equations.

Denoting by . and � two finite configurations, we define a unit cube

Q(r)=[x=(x1,..., xd) # Rd: \i # [1,..., d ], ri& 1
2�xi�ri+ 1

2]

The finite subsets R and S of Zd are defined such that . # �r # R Q(r) and
� # �s # S Q(s). Besides, if r # Zd, we let |r|=sup i # [1,..., d ] |ri |.

Let us now recall the well known assumptions of superstability and
regularity of ref. 17:

v Superstability: there exists A>0 and B�0 such that

V(.)> :
r # R

(An2(., r)&Bn(., r))

where n(., r) is the number of points of the configuration . in the hyper-
cube Q(r).

v Lower Regularity:

W(., �)> & :
r # R

:
s # S

9( |r&s| )
(n2(�, s)+n2(., r))

2

where 9 is a decreasing function satisfying �r # Z d 9( |r| )<+�.
In the following, we restrict our study to point processes in R2.
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3. PRESENTATION OF THE MODEL

Due to the linear complexity of the Delaunay graph, the stability
property for Delaunay pairwise model is obtained by choosing a lower
bounded pairwise potential. The superstability property cannot be obtained
using the same argument. The classical approach being impossible, we
adopt here two different ones.

The first approach consists of considering Delaunay subgraphs such
that models based on these subgraphs are local stable and quasilocal. In
particular such a subgraph, proposed in this paper and named ;-Delaunay
graph, is obtained by keeping all edges of the Delaunay triangles with the
smallest angle greater than a fixed value ;0 . Thus, the Theorem 3.1 of
Preston(15) leads to the existence of Gibbs state for this model. One should
notice that this approach is very similar to the one adopted in a previous
paper.(2)

In the second approach, we are interested in the Delaunay subgraph,
called :-Delaunay graph, obtained by deleting the greatest edge of every
triangles with greatest angle greater than a fixed value :0 . The values of :0

and ;0 can be chosen such that the :-Delaunay graph contains the
;-Delaunay graph. The :-Delaunay pairwise model satisfies the local
stability and quasilocality properties if a hard-core condition is assumed on
the pairwise potential. When this condition is not satisfied, we may intro-
duce a new model by the addition of a superstable component. Under some
suitable integrability assumption of the :-Delaunay pairwise potential at
infinity, we show that the :-Delaunay pairwise model is lower regular
and satisfies a weak kind of quasilocality property introduced in the
Theorem 3.3 of Preston.(15) These two properties could not be obtained for
the Delaunay pairwise model. Consequently, the :-Delaunay pairwise
model with superstable component satisfies the hypothesis of Theorem 3.3
of Preston(15) yielding the existence of Gibbs state.

3.1. ;-Delaunay Pairwise Model

In order to introduce the next model based on the :-Delaunay graph,
we first deal with a model based on the ;-Delaunay graph which is a sub-
graph of the previous one (see (3)). The finite energy is then expressed for
any . # 0f as:

V(.)= :

! # Del
;0
2, ; (.)

,(!) (4)

where , is a pairwise potential satisfying some suitable assumptions given
below. The existence of Gibbs state based on this finite energy is mainly
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derived from a previous paper(2) that deals with the existence of model with
finite energy of the form:

V(.)= :

� # Del
;0
3, ; (.)

,(�) (5)

Indeed, we can prove that for any configurations .1 and .2 we have:

Del ;0
2, ;(.1)"Del ;0

2, ;(.2)/[!/� : |!|=2 and � # Del ;0
3, ;(.1)"Del ;0

3, ;(.2)]

in particular, this means that any residual edge of the local energy
associated to finite energy given by (4) is contained in some residual
triangle of the local energy associated to finite energy given by (5). In fact,
the model studied in this subsection is very similar to the following model
proposed in ref. 2 as a particular case of (5):

V(.)= 1
2 :

� # Del
;0
3, ; (.)

:

|!|=2
!/�

,(!)

for which we assume that:

(H): \y1 , y2 # R2, |,([ y1 , y2])|�,� (&y1& y2&)�K

with ,� a positive decreasing function which vanishes asymptotically and K
a positive constant.

Under (H), the existence of stationary Gibbs state is proved for the
two models exactly in the same way (see ref. 2 for further details).

3.2. : -Delaunay Pairwise Model

The Delaunay graph is a kind of ``multidirectional'' nearest neighbours
graph. In particular, two points cannot be neighbours if there exists one
point aligned between them. When points represent particules of diameter
=>0 one may think that two particules do not interact together if another
one is quasi-aligned between them. Thus, the :-Delaunay graph chosen
near enough from ?, expresses this type of interaction and generalizes the
concept of interactions in the Delaunay sense for three particules quasi-
aligned.

Originally, our-goal was to study the existence of Gibbs state associated
with pairwise finite energy based on the Delaunay graph. Unfortunately,
this model is not quasilocal (and lower regular too) because of the con-
tribution of residual edges which do not vanish asymptotically. One way to
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solve this problem is to introduce some greatest angle criteria and define
the :-Delaunay graph.

Given . # 0f , the finite energy is expressed as

V(.)= :
� # Del

:0
2, : (.)

,(!) (6)

where , is a lower bounded function such that there exists a positive
decreasing function ,� satisfying for any points y1 and y2 in R2:

|,([ y1 , y2])|�,� (&y1& y2 &) and |
+�

0
t,� (t) dt<+�

Generally, , is of the form, ,(!)= g(&y1& y2 &), for any !=[ y1 , y2] #
Del :0

2, :(.), where g is some real valued function.

Remark 1. 1. When :0>?�2, we may express the Delaunay pair-
wise model as:

V(.)= :
� # DC(.)

,del (�)

where, for any � # DC(.),

,(�) if � # Del2(.)

,del (�)={&,(h(�)) if � � Del :0
3, :(.)

0 otherwise

2. Given :0 and R0 , this remains true when we replace Del :0
3, : by:

Del :0 , R0
3, :, R(.)=[� # Del3(.) : :(�)<:0 or R(�)<R0]

3. The condition on the greatest angle (:(�)>:0) is required here in
order to obtain the quasilocality and lower regularity properties.

3.3. Mixed Pairwise Model

In a previous paper(3) we introduced the Delaunay pairwise model
with a hard-core component in a bounded Borel set. In this section, we
replace the hard-core component by a more general superstable compo-
nent.

Given . # 0f , the finite energy is V(.)=V1(.)+V2(.) where V1(.)
is an :-Delaunay pairwise finite energy and V2(.) is a superstable and
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lower regular finite energy. In particular, in the pairwise interaction case
the local energy V2(.) is:

V2(.)= :
[x, y] # ., x{ y

,sr(x& y)

where ,sr denotes the pairwise interaction potential satisfying the
Dobrushin, Fisher and Ruelle assumptions:(16)

,sr�&K, (K�0)

{,sr(x)�,1( |x| ) for |x|�r1

|,sr(x)|�,2( |x| ) for |x|�r2

For any 0<r1<r2<+�, ,1 and ,2 are positive decreasing functions such
that

{
,1 : [0, r1] � R _ [+�]

,2 : [r2 , +�) � R

and |
r1

0
t,1(t) dt=+�

and |
+�

r2

t,2(t) dt<+�

These assumptions are sufficient for the regularity and the superstability
of ,sr . The addition of the classical superstable component allows us to use
a Delaunay pairwise interaction potential of the Lennard�Jones type.

4. PROPERTIES OF THE :-DELAUNAY PAIRWISE MODEL

In this section, we establish respectively the stability, the lower regularity
and some weak kind of quasilocality properties of the :-Delaunay pairwise
model.

4.1. Stability

Clearly the stability is a direct consequence of the linear complexity of
the Delaunay graph (Corollary 5.2, p. 105 of ref. 14):

V(.)�3 inf(,) |.| (7)

We point out that the stability for classical pairwise models may require
more restrictive conditions on the interaction potential. Due to the linear-
complexity of the Delaunay graph, we cannot obtain the superstability
property.
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4.2. Lower Regularity

We notice that for our model two kinds of contribution appear in the
expression of W(., �). The first one, called here ``positive'' contribution
and denoted by W+(., �), corresponds to creating edges that connect a
point of . to a point of �. The second one, that is unexpected, is called
here ``negative'' contribution and is denoted by W&(., �), and it
corresponds to deleting edges (i.e., broken edges) that connect two points
of . or two points of �. The mutual energy between configurations . and
� can be written as:

W(., �)=W +(., �)+W &(., �)

We point out that in the classical models, there is only a ``positive'' con-
tribution for the mutual energy (i.e., W(., �)=W +(., �)).

Before expressing the mutual energy between two finite configurations
. and �, we introduce the particular sets of edges:

Del +
2 (�, .)=Del2(� _ .)"Del2(.) and

Del :0 , +
2, : (�, .)=Del :0

2, :(� _ .)"Del :0
2, :(.)

Del &
2 (�, .)=Del2(.)"Del2(� _ .) and

Del :0, &
2, : (�, .)=Del :0

2, :(.)"Del :0
2, :(� _ .)

By convenience, when � reduces to a singleton [|] we denote Del +
2 (�, .)

(resp. Del :0 , +
2, : (�, .), Del &

2 (�, .) and Del :0 , &
2, : (�, .)) by Del +

2 (|, .) (resp.
Del :0 , +

2, : (|, .), Del &
2 (|, .) and Del :0 , &

2, : (|, .)).
More precisely, in the :-Delaunay pairwise model we have

W +(., �)= :
! # Del2, :

:0 , +
(�, .)

,(!)

= :

z # ., | # �
[z, |] # Del

:0
2, : (. _ �)

,([|, z])

and W &(., �) is decomposed into two parts:

W &(., �)=W &
. (�)+W &

� (.)

where

W &
. (�)=& :

! # Del 2, :
:0 , &

(�, .)

,(!)
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and

W &
� (.)=& :

! # Del 2, :
:0 , &

(�, .)

,(!)

Proposition 1. The Delaunay model based on the finite energy V
is lower regular. Indeed, there exists a positive decreasing integrable func-
tion ,* such that

W(., �)�& :
r # R

:
s # S

,*( |r&s| ) n(., r) n(�, s)

where the function ,* is of the form

,*(n)=5 sup
t # [(n&1) *; +�[

(,� (t sin(:0)))=5,� ((n&1) * sin(:0))

The rest of this section is devoted to the proof of Proposition 1 decom-
posed as follows:

v First, we describe the residual edges of the ``negative'' contribution
W &

. (�).

v Then, we have to associate them with edges of . 6 �. In fact, the
association occurs only between residual edges of W &

. (�) and ``positive''
residual edges of some suitable local energy. Therefore, these ``negative''
edges are decomposed into two parts where for each part one association
is proposed. In particular, these associations allow us to control the length
and the number of the ``negative'' edges with respect to ``positive'' ones.

v Finally, we obtain lower bound of the mutual energy leading to the
lower regularity property.

We first decompose Del :0 , &
2, : (�, .):

Del :0 , &
2, : (�, .)= .

| # � \B0
|(.) _ B1

|(.) _ .
|$ # �"[|]

B2
|, |$(.)+

with

B0
|(.)=Del :0 , &

2, : (|, .)"Del &
2 (|, .)

=Del :0
2, :(.) & Del2(. _ [|]) & Del :0

2, :(. _ [|])

B1
|(.)=Del :0 , &

2, : (|, .) & Del &
2 (|, .)

B2
|, |$(.)=Del :0

2, :(.) & Del :0
2, :(. _ [|])

& Del :0
2, :(. _ [|$]) & Del :0

2, :(. _ [|, |$])
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Fig. 2. Since #(x4 , [x1 , x2])>:0 , the edge [x1 , x2] # B0
x4

([x1 , x2 , x3]).

B0
|(.) corresponds to the set of residual edges that are not broken in the

Delaunay graph (see Fig. 2) whereas B1
|(.) and B2

|, |$(.) are respectively the
set of edges that are really broken in the Delaunay graph by the insertion of
one point | of � and two points | and |$ of � into the configuration . (see
Fig. 3).

We should notice that at least one of the two points | or |$, denoted
here by |, satisfies the relation #(|, !)�?�2. Then, we define:

B2
|(.)= .

|$ # �"[|] \B2
|, |$(.) & {! # P2(.) : #(|, !)�

?
2=+

Now, we are interested in two types of ``negative'' edges for which we
propose two associations with ``positive'' edges.

The two types of edges (see Fig. 4) are defined, for any | # �, by:

I|(.)=\B1
|(.) & {! # Del2(.) : #(|, !)�

?
2=+_ B2

|(.) _ B0
|(.)

Fig. 3. .=[x1 , x2 , x3 , x4], [x1 , x2] # Del :0
2 (.), [x1 , x2] # Del :0

2 (. _ [|1]), [x1 , x2] #
Del :0

2 (. _ [|2]) but [x1 , x2] � Del :0
2 (. _ [|1 , |2]). Thus, [x1 , x2] # B2

|1 , |2
(.).
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File: 822J 231716 . By:SD . Date:16:06:99 . Time:08:02 LOP8M. V8.B. Page 01:01
Codes: 1466 Signs: 510 . Length: 44 pic 2 pts, 186 mm

Fig. 4. When .=[x1 , x2 , x3] and |=x4 , [x2 , x3] # I|(.) whereas, when .=[x2 , x3 , x4]
and |=x1 , [x2 , x3] # II|(.).

and

II|(.)=B1
|(.) & {! # Del2(.) : #(|, !)<

?
2=

Since :0�?�2, we notice that, for any edge ! # I|(.), #(|, !)�?�2.
In order to deal with the association of edges in I|(.), we recall some

properties of he Delaunay graph. We then introduce:

Del ext
2 (|, .)=[! # Del2(. _ [|]): | # X opp(!, . _ [|])]

Del 2*(|, .)=Del &
2 (|, .) _ Del ext

2 (|, .)

Lemma 2. We have the following,

N(| | .)=N0(| | .) _ �! # G0(| | .) N!(| | .)

and

Del 2*(|, .)= .
! # G0(| | .)

G!(| | .)
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where

N0(| | .)={z # N(| | .): } ]|, z[ & ,
[ y1, y2] # Del 2

&(|, .)

]y1 , y2[ }=0=
G0(| | .)=(N0(| | .) 6N0(| | .)) & Del 2*(|, .)

and for any !=[ y1 , y2] # G0(| | .),

N!(| | .)=[z # N(| | .)"N0(| | .) : |]|, z[ & ]y1 , y2[|{0]

G!(| | .)=((N!(| | .) 6 (N!(| | .) _ N0(| | .))) & Del 2*(|, .)) _ [!]

Notice that for any !1 , !2 # G0(| | .) such that !1{!2 we have:

N!1
(| | .) & N!2

(| | .)=< and G!1
(| | .) & G!2

(| | .)=<

and, in particular:

(N!1
(| | .) 6N!2

(| | .)) & Del 2*(|, .)=< (8)

Combining this property with some elementary geometrical results,
we are able to characterize the sets cp(|, .) of subgraphs of I|(.)/
Del 2*(|, .) describing closed paths (i.e., every vertices have exactly two
neighbours). We state:

Lemma 3. |cp(|, .)|�1.

Proof. We prove that if there exists an element of cp(|, .), then the
point | is inside it.

v Assume that there exists L # cp(|, .) such that | is not in the
interior of L. Thus, a direct consequence of (8) is the existence of ! #
G0(|, .) such that L/G!(|, .). In particular, this means that vertices of
L are in 6 ext(|, !). But, by definition of I|(.), we have L/[!$ # P2(.) :
#(|, !$)�?�2] which yields a contradiction.

v Now, assume that there exists at least L, L$ # cp(|, .) with L{L$
for which | is inside them. As a consequence of (8), L and L$ must have
the three points of N0(| | .) as vertices. Thus, there exists L" # cp(|, .)
satisfying L"/L _ L$ and for which | is not in the interior of L". Thus,
the proof is complete. K

Furthermore, same arguments show that the only possible element of
cp(|, .) is the set of edges of the triangle G0(| | .).

By Lemma 3, it is not difficult to associate each edge of I|(.) to a
unique edge of . 6 � with length lower than the previous one. More
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precisely, there exists an injection (not necessarily unique) f I
| from I|(.)

into . 6 � such that:

\!=[ y1 , y2] # I|(.), f I
|(!)=[|, y1] or f I

|(!)=[|, y2]

Indeed, we may proceed as follows:

v Initially, consider the subgraph I|(.) with vertices denoted by
y1 ,..., yn .

v Inductively, choose any vertex yj with exactly one neighbour yk and
associate the edge [ yj , yk] to the edge [|, y j] (i.e., f I

|([ y j , yk])=
[|, yj]). Next, consider the new subgraph obtained from the previous one
without using the edge [ yj , yk] already considered.

v At the end of this procedure, it remains possible to consider the
unique closed path for which the association is direct.

Now, we only need to deal with the association of edges in II|(.).
Any edge ! in II|(.) can be associated to the edge [|, z] where z is the
point of Xopp(!, .) satisfying | # Cext(z, !). Furthermore, by Lemma 1,

&!&�&[|&z]&_sin(:0)

Thus, the application f II
| defined from II|(.) into . 6 � such that:

\!=[ y1 , y2] # II|(.), f II
|(!)=[|, z]

is an injection too.
Let us denote

I�(.)= .
| # �

I|(.)

II�(.)= .
| # �

II|(.)

and notice that

Del :0 , &
2, : (�, .)=I�(.) _ II�(.)

Thus, we define the application aI
�, . (resp. aII

�, .) from . 6 � into
I�(.) _ [<] (resp. II�(.) _ [<]) by:

aI
�, .([z, |])={!

<
if z= f I

|(!)
otherwise

\resp. a II
�, .([z, |])={!

<
if z= f II

|(!)
otherwise +
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Hence, the different contributions of the mutual energy become:

W +(., �)� :

z # ., | # �
[z, |] # Del

:0
2, : (. _ �)

,&([|, z])

� & :

z # ., | # �
[z, |] # Del

:0
2, : (. _ �)

,� (&|&z&)

� & :
[z, |] # . 6 �

,� (&|&z& sin(:0))

and

W &
. (�)� & :

[ y1 , y2] # Del 2, :

:0 , &
(�, .)

,([ y1 , y2])

� & :
[ y1, y2] # I�(.)

,� (&y1& y2&)& :
[ y1, y2] # II�(.)

,� (&y1& y2&)

� & :
[z, |] # (aI

�, .)&1 (I�(.))

,� (&|&z& sin(:0))

& :
[z, |] # (aII

�, .)&1 (II�(.))

,� (&|&z& sin(:0))

� &2 :
[z, |] # . 6�

,� (&|&z& sin(:0))

as a consequence of Lemma 1. By symmetry, we obtain the same inequality
for W &

� (.).
Finally, it follows

W(., �)�&5 :
[z, |] # . 6 �

,� (&|&z& sin(:0))

�& :
r # R

:
s # S

,*( |r&s| ) n(., r) n(�, s)

which completes the proof.

4.3. Quasilocality on Um

Given 4, 4� # Bb such that 4/4� . 4� will increase to R2 (in the Van
Hove sense) in order to obtain thermodynamic limit. Let us choose n4 such
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that Cn4
#4 and take n4� , inf the greatest integer and n4� , sup the lowest

integer such that

Cn4� , inf
/4� /Cn4� , sup

We may assume that n4� , inf and n4� , sup upper than n4 . Let us decompose
any configuration . # 0f as follows:

.=.i _ .b _ .o

with .i the subconfiguration inside 4, .o the subconfiguration outside 4�
and .b the subconfiguration between 4 and 4� , say . & (4� "4). For the
:-Delaunay model, we obtain

V4(.i, .)&V 4�
4(.i, .)=V(.)&V(.b _ .o)&V(.i _ .b)+V(.b)

By defining,

31=[!=[ y1 , y2] : y1 # .i, y2 # .o, ! # Del :0
2, :(.)]

32=[!=[ y1 , y2]/.b : ! # Del :0
2, :(.b)

& Del :0
2, :(.b _ .o) & Del :0

2, :(.i _ .b)]

33=[!=[ y1 , y2]/.b : ! # Del :0
2, :(.b _ .o)

& Del :0
2, :(. i _ .b) & Del :0

2, :(.)]

3 i
4=[!=[ y1 , y2]/.i : ! # Del :0

2, :(.i _ .b) & Del :0
2, :(.)]

3 i
5=[!=[ y1 , y2] : y1 # .i, y2 # .b, ! # Del :0

2, :(. i _ .b) & Del :0
2, :(.)]

3 o
4=[! # [ y1 , y2]/.o : ! # Del :0

2, :(.b _ .o) & Del :0
2, :(.)]

3 o
5=[!=[ y1 , y2] : y1 # .o, y2 # .b, ! # Del :0

2, :(.b _ .o) & Del :0
2, :(.)]

3 i
6={!=[ y1 , y2] : y1 # .o, y2 # .b _ .o, ! # .

| # .i

B0
|(.b _ .o)=

3 o
6={!=[ y1 , y2] : y1 # .i, y2 # .i _ .b, ! # .

| # .o

B0
|(. i _ .b)=

PP=[!=[ y1 , y2] : _|1 # .i, _|2 # .o : &y1& y2&>sin(:0) &|1&|2&]

3 +=(31 _ 32) & PP

3 &=\33 _ \ .
6

k=4

3 i
k+_ \ .

6

k=4

3 o
k++& PP

we state the following result.
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Proposition 2. 1. For any 4� #4 and any . # 0,

V4(.i, .)&V 4�
4(.i, .)= :

! # 3+

,(!)& :
! # 3&

,(!) (9)

2. For any 4� large enough,

|V4(.i, .)&V 4�
4(.i, .)|�|.i| $m(4� ) uniformly in . # Um

where $m vanishes asymptotically. Consequently, the Delaunay pairwise
model satisfies the condition (3.13).

The proof of this proposition is given in appendix. In particular, the
proof of the second part of this proposition relies on some arguments given
by Preston when proving the same condition (3.13) for the superstable and
regular pairwise interaction model.

5. EXISTENCE OF MIXED PAIRWISE MODEL

Using the Theorem 3.3 of Preston, (15) we proved the existence of
Gibbs state for the mixed pairwise model.

Proposition 3. The mixed pairwise model satisfies the conditions
(3.7), (3.12) and (3.13) of the Preston's theorem. Then the set of Gibbs
states associated to the mixed finite energy is non empty.

Proof. Condition (3.12): On the one hand,

(V1 Superstable and V2 Stable) O (V=V1+V2 Superstable)

and, on the other hand,

(V1 and V2 Lower Regular) O (V=V1+V2 Lower Regular)

It implies that according to the Ruelle's results and as shown by Preston
in the lemma (6.8), V satisfies (3.12).

Condition (3.7): For any F # F� 2 ,

?4(<, F )=?4(<, F & Um0
)+?4(<, F & U c

m0
)

From (3.12), we know that

?4(<, F & U c
m0

)�$ uniformly on 4
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Now,

?4(<, F & Um0
)=|

U$m0

?2(t, F & Um0
) ?4(<, dt)

� sup
t # U$m0

?2(t, F & Um0
)

where U$m0
=[� # 04 : � # Um0

]. However, for any t # U$m0
,

?2(t, F & Um0
)=

1
Z2(t) |

F & Um0

e&V2(x | t)Q4(dx)

�|
F & Um0

eDm0
|x|Q4(dx)=|(F )

by using Lemma 5. Condition (3.13): (V1 and V2 satisfy (3.13)) O (V=
V1+V2 satisfies (3.13)). K

When we replace the superstable component by a hard-core condition
on the :-Delaunay pairwise potential, we can establish the local stability
and quasilocality properties by using similar arguments as Klein.(11) This
leads to the existence of Gibbs State by Theorem 3.1 of Preston.(15)

6. APPENDIX: PROOF OF PROPOSITION 2

6.1. Proof of Proposition 2.1

This proof is to determine every residual edges in the difference
between V4(.i, .) and V 4�

4(.i, .). Furthermore, we show that these
residual edges are in PP.

1. !=[ y1 , y2] with y1 # . i, y2 # .o:

Necessarily, ! # Del :0
2, :(.) & Del :0

2, :(.b _ .o) & Del :0
2, :(.i _ .b) &

Del :0
2, :(.b) (i.e., ! # 31).

2. !=[ y1 , y2] with y1 , y2 # .b:

We have ! � Del :0
2, :(.) since otherwise using relation (1)

! # Del :0
2, :(.b _ .o) & Del :0

2, :(.i _ .b) & Del :0
2, :(.

b)

! is not residual in the quantity V4(.i, .b _ .o)&V 4�
4(.i, .b _ .o). Like-

wise from relation (1), we can prove that the residual edges are:
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(i) ! # Del :0
2, :(.b) & Del :0

2, :(.b _ .o) & Del :0
2, :(.i _ .b): in this case,

! # 32 . We have to prove that ! # PP. Let z # .b such that [ y1 , y2 , z] #
Del3(.b). Since [ y1 , y2 , z] � Del :0

2, :(.i _ .b) _ Del :0
2, :(.b _ .o), there exists

|1 # .i and |2 # .o such that |1 , |2 # Cext(z, [ y1 , y2]). Under Lemma 1
and relation (6) we conclude that ! # PP.

(ii) ! # Del :0
2, :(.b _ .o) & Del :0

2, :(.i _ .b): in this case, ! # 33 . We
have to prove that ! # PP. There exists z # .o (resp. z # .i) such that2

[ y1 , y2 , z] # Del :0
2, :(.b _ .o)

& Del :0
2, :(.) (resp. [ y1 , y2 , z] # Del :0

2, :(.i _ .b) & Del :0
2, :(.)

Thus, there exists | # .i (resp. | # .o) such that

| # Cext(z, [ y1 , y2])

Lemma 1 and relation (6) lead to ! # PP.

3. !=[ y1 , y2] with y1 , y2 # .i: according to relation (1), the only
case to consider is ! # 3 i

4 . Thus, there exists z # .i _ .b and .o such that

| # Cext(z, [ y1 , y2])

Lemma 1 and relation (6) lead to ! # PP.

4. !=[ y1 , y2] with y1 # .i, y2 # .b: according to relation (1), the
only case to consider is ! # 3 i

5 . Thus, there exists z # .i _ .b and | # .o

such that

| # Cext(z, [ y1 , y2])

Lemma 1 and relation (6) lead to ! # PP.

5. Unfortunately, when !=[ y1 , y2] with y1 # .o and y2 # .b _ .o, it
may happen that ! # �| # .i B0

|(.b _ .o), i.e., ! # 3 i
6 . Since there exists

z # .i such that

! _ [z] # Del3(.) and #(z, [ y1 , y1])�:0>
?
2
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2 In the two cases, we exclude the eventuality z # .b. Indeed, if z # .b then [ y1 , y2 , z] #
Del3(.b). Since ! # Del :0

2, :(.b _ .o) & Del :0
2, :(.i _ .b) & Del :0

2, :(.) there exists | # .o or
| # .i such that

| # Cext(z, [ y1 , y2])
then, ! � Del :0

2, :(. i _ .b) or ! � Del :0
2, :(.b _ .o) which yields a contradiction with our asump-

tion. Thus, z � .b.



it follows that

&y1& y2&�&z& y1&�sin(:0) &z& y1&

Thus, ! # PP.

From the symmetry between .i and .o in the quantity V4(.i, .)&
V 4�

4(.i, .), the cases %o
4 , 3 o

5 and 3 o
6 are respectively the symmetric cases of

3 i
4 , 3 i

5 , and 3 i
6 . Moreover, the proofs are similar. K

6.2. Proof of Proposition 2.2

In order to simplify the notation, we take

kn=sin(:0)_(n&n4) and ;n=|4n |

Lemma 4. Given any .i # 04 , lim4� � R2 V 4�
4(.i, .)=V4(.i, .) uni-

formly on . # Um .

Proof. Let n0 be the integer such that for any 4� #Cn0
, we have

kn4� , inf
�diam(4)

Then, we first prove that for any 4� #Cn0

|V4(.i, .)&V 4�
4(.i, .)|�|.i| $m(4� ) uniformly in . # Um

where

$m(4� )=4 :
+�

n=n4� , inf

m;n,� (kn)+10mn2
4� , sup,� (kn4� , inf

)

Indeed, in the proof of Proposition 2.1, we showed that each residual
edge in the difference between V4(.i, .) and V 4�

4(.i, .) is in PP. Now, we
can prove that the number and the length of these residual edges are con-
trolled. More precisely, it follows:

1. ! # 31 : if y1 # .i and y2 # 4n then there exists no more than
2( |.i |+m;n)�2m;n |.i | edges ! with length greater than kn .

2. ! # 32 : there exists no more than 3mn2
4� , sup�3mn2

4� , sup |. i | edges !
with length kn4� , inf

.

3. ! # 33 : similar to 32 .

4. ! # 3 i
4 : since kn4� , inf

�diam(4), such type of edges do not exist
when 4� is large enough.
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5. ! # 3 i
5 : there exists no more than 2( |.i |+mn2

4� , sup)�2mn2
4� , sup |.i |

edges ! with length kn4� , inf
.

6. ! # 3 o
6 : similar to 3 i

4 .

7. ! # 3 o
4 _ 3 o

5 : there exists z # .b _ .o, |1 , |2 # .i such that

[ y1 , z, |1] # Del3(.) and [ y2 , z, |2] # Del3(.)

and we may associate in a unique way the edge [z, |1] # Del2(.) to the
edge [ y1 , y2]. Hence, if z # .b the number of edges ! is lower than 2( |.i |
+mn2

4� , sup)�2mn2
4� , sup |.i | , and, if z # .o the number of edges ! is lower

than number of edges of 31 .

8. ! # 3 i
6 : we may associate in a unique way the edge [z, y2] #

Del2(.) to the edge [ y1 , y2] where z # .i is such that ! # B0
z(.b _ .o). K

Let us notice that a consequence of

lim
4� � R2

$m(4� )=0

is the existence of n1>0 and $m>0 such that, for any 4� #Cn1
,

$m(4� )�$m<+�

Lemma 5. There exists some positive constant Dm such that

V 4�
4(.i, .)�&Dm |.i|

uniformly on . # Um and on 4� #Cn1
.

The proof of this lemma is more or less proposed by Ruelle, (17) p. 140
as a consequence of the lower regularity property.

Proof of Condition (3.13) for the Delaunay Pairwise Model.
Similarly to Preston in the Lemma 6.7 (p. 106 and 107), we only need to
prove the convergence for any G # F� 4 of �G e&V 4

4� (.i, .)Q4(d.i) to
�G e&V4(.i, .)Q4(d.i ) uniformly on . # Um . From the previous Lemma 5,
we have

|e&V4
4� (.i, .)&e&V4(.i, .)|

�|V 4�
4(.i, .)&V4(.i, .)| emax[&V 4

4� (.i, .), &V4(.i, .)]

�|V 4�
4(.i, .)&V4(.i, .)| eDm |.i |
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It follows from Lemma 4 that for any 4� #Cn1
,

|e&V 4
4� (.i, .)&e&V4(.i, .)|�$m(4� )| .i| eDm |.i | �$m |.i | eDm |.i |

Since

|
G

|.i | eDm |.i |Q4(d. i)= :
n�1

n
(*eDm |4| )n

n !
=*eDm |4| exp(*eDm |4| )<+�

we can apply the Lebesgue's dominated convergence theorem. K
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